Интересное о кислороде

Об известном и не слишком известном «элементе №8»

Дрова горят, животные горят, человек горит, все горит, а между тем не сгорает. Сжигают леса, а растительность не уничтожается: исчезают поколения, а человечество живо. Если бы все только горело, то на поверхности земли давно не было бы ни растений, ни животных, была бы только углекислота и вода.

К.А. Тимирязев

Рассказывать в популярной статье о свойствах кислорода – дело в высшей степени неблагодарное. С одной стороны, этот элемент сам по себе слишком популярен и, рассказывая о нем, рискуешь повторять многочисленные учебники. Одна из характерных особенностей кислорода состоит в том, что, наверное, во всех странах этот элемент «проходят» в школе...

Но с другой стороны, для объяснения свойств кислорода иногда приходится забираться в такие научные дебри, лексикон которых крайне трудно «переводится» на общепринятый язык.

Возьмем, к примеру, такое свойство кислорода, как парамагнитность. Именно магнитными свойствами элемент №8 отличается от всех прочих газообразных (при обычных условиях) элементов. Кислород – активный окислитель, но есть и другие элементы-окислители, например фтор. Кислород превращается в жидкость при очень низких температурах – но у водорода, гелия, азота точки кипения лежат еще ниже. А вот другого парамагнетика среди газообразных элементов нет.

Видимое проявление парамагнетизма – способность вещества втягиваться в магнитное поле – объясняется тем, что у молекул парамагнитных веществ есть собственный магнитный момент. Есть он и у молекул кислорода, но откуда он берется?

Внешняя электронная оболочка кислородного атома состоит из шести электронов. Четыре из них – спаренные – объединены в две пары, а два – «холостые». Спаренные электроны отличаются друг от друга лишь спином. Спин – это внутренний момент количества движения частицы, имеющий квантовую природу. Именно этими «моментами» определяются все магнитные свойства вещества (диамагнетизм, ферромагнетизм, парамагнетизм и т.д.). Физический носитель магнитных свойств – не просто электрон, а именно не спаренный электрон, потому что спаренные электроны образуют устойчивую систему, не имеющую собственного магнитного момента.

Идя путем спортивных аналогий, можно сказать, что спаренный электрон подобен футболисту, который получил на игру установку «не упустить» одного из соперников. А тот ведет себя в соответствии с установкой своего тренера: следи за опекающим тебя защитником, подключившись в атаку, он, дескать, очень опасен. Оба увлечены «взаимоудержанием» и в каком-то смысле выпадают из игры – футбольной или магнитной. Зато неспаренный электрон – это «блуждающий форвард», от которого можно ждать чего угодно (правда, как и в спорте, в рамках определенных правил).

Итак, способность молекул кислорода втягиваться и магнитное поле показывает, что они обладают неспаренными электронами. На первый взгляд в этом нет ничего удивительного: давно установлено, что каждый атом кислорода имеет на внешней оболочке два неспаренных электрона. Но могут ли они остаться неспаренными при объединении двух атомов кислорода в молекулу?

Очевидно, каждая молекула О2 должна образовываться при помощи двух ковалентных связей О = О. Но в этом случае на построение молекулы были бы израсходованы все четыре неспаренных электрона. И тогда у молекулы кислорода не могло бы быть парамагнитных свойств. Но парамагнетизм элемента №8 – факт, многократно подтвержденный в эксперименте.

Высказывалось предположение, что на образование двухатомной молекулы каждый атом кислорода затрачивает лишь один неспаренный электрон, а другой так и остается «холостым», и эти электроны делают молекулу парамагнитной. Однако такое объяснение противоречит экспериментальным данным. Для разрыва одинарных связей в грамм – молекуле кислорода потребовалось бы около 50 ккал; в действительности же приходится тратить в два с лишним раза больше энергии.

Выходит, что в молекуле кислорода не может быть ни двойной, ни одинарной связи. Тогда какая же она, эта связь?

Единого мнения на этот счет у ученых до сих пор нет, и многие детали строения молекулы кислорода еще не полностью выяснены. Вполне удовлетворительно, правда, объяснение свойств кислородной молекулы с помощью выдвинутого квантовой химией метода молекулярных орбит. Однако это объяснение слишком сложно, чтобы говорить о нем вскользь в популярной статье.

Теперь о других – более понятных и легче объяснимых свойствах элемента №8.

Как и положено элементу, занимающему место в правом верхнем углу таблицы Менделеева, кислород обладает ярко выраженными окислительными свойствами. Наружная электронная оболочка атома кислорода состоит из шести электронов, и к предельно заполненной оболочке (условие максимальной химической устойчивости) атом кислорода может прийти двумя путями: или захватив два «посторонних» электрона, или отдав шесть. Первый путь, естественно, проще, он требует меньших затрат энергии. Поэтому в реакциях с подавляющим большинством атомов кислород выступает в роли окислителя. Если можно так выразиться, окислительнее кислорода только один элемент – фтор. Лишь в реакциях с фтором окислителем оказывается не элемент №8, а его партнер.

Для развития активной реакции кислорода с большинством простых и сложных веществ нужно нагревание – чтобы преодолеть потенциальный барьер, препятствующий химическому процессу. Энергетическая «добавка» (энергия активации) в разных реакциях нужна разная. С фосфором кислород активно реагирует при нагревании последнего до 60, с серой – до 250, с водородом – больше 300, с углеродом (в виде графита) – при 700...800°C. Правда, есть вещества, например окись азота, соединения одновалентной меди и, к счастью, гемоглобин крови, способные реагировать с кислородом и при комнатной температуре. С помощью катализаторов, снижающих энергию активации, могут идти без подогрева и другие процессы, в частности соединение кислорода с водородом.

Обычно же эта реакция идет при повышенных температурах и протекает очень бурно – может даже перейти во взрыв. Такой процесс происходит по схеме разветвленной цепной реакции. (Теория цепных реакций создана в результате работы многих ученых и в первую очередь – лауреата Нобелевской премии академика Н.Н. Семёнова). Цепные реакции начинаются с образования нестабильных активных частиц – свободных радикалов, «носителей» неспаренных электронов (на схеме они обозначены звездочками). Они-то и ведут реакцию «по цепочке»:

Высокая окислительная способность кислорода лежит в основе горения всех видов топлива, включая пороха, для горения которых не нужен кислород воздуха: в процессе горения таких веществ кислород выделяется из них самих.

Кислород – один из сильных окислителей. Об этом можно судить хотя бы потому, что баки с жидким кислородом – необходимая принадлежность большинства жидкостных ракетных двигателей.

Впрочем, далеко не всегда окислительные реакции с участием кислорода выглядят как стихия пламени или взрыва.

Процессы медленного окисления различных веществ при обычной температуре имеют для жизни не меньшее значение, чем горение – для энергетики.

Медленное окисление веществ пищи в нашем организме – «энергетическая база» жизни. (Заметим попутно, что наш организм не слишком экономно использует вдыхаемый кислород: в выдыхаемом воздухе кислорода примерно 16%.) Тепло преющего сена – результат медленного окисления органических веществ растительного происхождения. Медленное окисление навоза и перегноя согревает парники...

Но не всегда медленное окисление органических веществ безвредно и безопасно. Если тепло, выделяющееся в этом процессе, не отводится, может произойти самовоспламенение. Это известно издавна. В учебнике химии, выпущенном в России в 1812 г., рассказывалось о пожарах в Петербурге, вызванных этим явлением. «В 1770 г. сделался великий пожар в пеньковом магазине на острове Малыя Невы, где совсем не держали огня». Правда, в том же учебнике рассказывалось о случае самовоспламенения «одной старухи из Северной Америки» с примечанием, что «сне происходит преимущественна с людьми, невоздержанными в употреблении спиртных напитков»...

Памятуя о необходимости борьбы с пьянством силами печати и науки, не стоило бы опровергать подобные заявления. Но, увы, факты – вещь упрямая: человеческий организм рассеивает тепло в пространстве, и даже самые прожженные пьяницы физически не могут самовоспламениться. Хорошо, что с научной точки зрения противоположный тезис – пьяного бог бережет – столь же несостоятелен.

Заканчивая главу о свойствах и особенностях кислорода, напомним – совсем коротко – о круговороте этого элемента в природе.

Если бы растения в процессе фотосинтеза не превращали воду и углекислый газ в органические соединения и этот процесс не сопровождался высвобождением связанного кислорода, то, исчерпав довольно быстро запасы атмосферного кислорода, весь животный мир, включая человечество, вскоре задохнулся бы. Но и растениям после этого пришлось бы несладко.

Дело в том, что растения, подобно животным, потребляют атмосферный кислород, правда они делают это исключительно в темное время суток. На ночь, когда прекращаются процессы фотосинтеза, растения из производителей кислорода превращаются в его потребителей. Это явленно наблюдал еще Шееле. А другой первооткрыватель кислорода Дж. Пристли еще до того, как кислород был открыт, выяснил, что зеленая ветка мяты, помещенная под стеклянный колпак с воздухом, в котором уже погасла свеча, возвращает этому воздуху способность поддерживать дыхание и горение.


Автор: Не определен
Источник: http://n-t.ru/ri/ps/pb008.htm